Advanced Materials World Congress
News Insight

Impact Factor of Advanced Materials Letters: 1.93

Online Advertising

Adv Mat Lett is an official journal of IAAM

VBRI Press is a member of CrossRefDOAJ
Adv Mat Lett is a member of DOAJ

fullabstractpdf

Get PDF

Full Article

Post-deposition Annealing Controlled Structural And Optical Properties Of RF Magnetron Sputtered MoO3 Films

S. Subbarayudu, V. Madhavi and S. Uthanna

Volume 4, Issue 8, Page 637-642, Year 2013, Current Issue | DOI: 10.5185/amlett.2012.11466

Keywords: RF sputtering; molybdenum oxide; post-annealing; structural;optical properties.

Abstract: 

MoO3 films were deposited on Corning glass and silicon substrates held at room temperature (303 K) by RF magnetron sputtering of metallic molybdenum target at a fixed oxygen partial pressure of 4x10-4 mbar and sputter pressure of 4x10-2 mbar. The as deposited films were annealed in air at different temperatures in the range 473 – 673 K.  X-ray diffraction studies suggest that the as-deposited and the films annealed at 473 K were amorphous in nature, while those annealed at 573 and 673 K were polycrystalline with mixed phases of α- orthorhombic and β- monoclinic MoO3. Scanning electron microscope images of the films annealed at 573 and 673 K exhibited nanoflower like and nanodisk like structures due to improvement in the crystallinity. Fourier transform infrared studies showed the characteristic vibrations of MoO3 with shift in the vibrational modes of Mo = O and Mo – O – Mo with increase of annealing temperature. The optical absorption edge of the films shifted towards lower wavelengths side with increase of annealing temperature. Optical band gap of as-deposited films was 2.98 eV with refractive index 2.01, while those annealed at 673 K showed the optical band gap of 3.15 eV and refractive index of 2.08. The MoO3 films annealed at 673 K were of nanocrystalline with crystallite size of 39 nm with optical band gap of 3.15 eV and refractive index of 2.08 were favorable for electron blocking and hole-selective layers in bulk-heterojuction solar cells. Copyright © 2013 VBRI press.

fullabstractpdf

Get PDF

Full Article