Indian materials smart materials
News Insight

Advanced Materials World Congress will be held in Stockholm, Sweden during 23-26 August 2015.

Online Advertising

Adv Mat Lett is an official journal of IAAM

VBRI Press is a member of CrossRefDOAJ
Adv Mat Lett is a member of DOAJ

fullabstractpdf

Get PDF

Full Article

Calculation Of Lattice Thermal Conductivity Of Suspended GaAs nanobeams: Effect Of Size Dependent Parameters

S. M. Mamand, M. S. Omar, A. J. Muhammed

Volume 3, Issue 6, Page 449-458, Year 2012, 'ICNANO 2011' Special Issue-1 | DOI: 10.5185/amlett.2012.icnano.102

Keywords: Nanostructures; lattice thermal conductivity; GaAs; phonon scatterings; lattice defects; surface roughness.

Abstract: 

Theoretical calculations of the magnitude and temperature variation of the measured thermal conductivity of undoped and doped GaAs nanobeams will present. The calculations have been performed by employing modified Callaway’s theoretical model. In the model, both longitudinal and transverse modes are explicitly taken into account. Scattering of phonons is assumed to be by nanobeam boundaries, imperfections, dislocations, electrons, and other phonons via both normal and Umklapp processes. A method is used to calculate the Debye temperature and phonon group velocities for undoped and doped nanobeams from their related melting points.  Phonon confinement and size effects as well as the role of dislocation in limiting thermal conductivity are investigated. The drop in thermal conductivity of doped nanobeams compared to that of the undoped beams arises from electron-phonon scattering and additional phonon scattering from a large number of point impurities due to the presence of dopant atoms. Effect of Gruneisen parameter, surface roughness, and dislocations are successfully used to correlate the calculated values of lattice thermal conductivity to that of the experimentally measured curves. Copyright © 2012 VBRI press.

fullabstractpdf

Get PDF

Full Article