Advanced Materials World Congress
News Insight

Impact Factor of Advanced Materials Letters: 1.93

Online Advertising

Adv Mat Lett is an official journal of IAAM

VBRI Press is a member of CrossRefDOAJ
Adv Mat Lett is a member of DOAJ

fullabstractpdf

Get PDF

Full Article abstractpdf

Get PDF

Fabrication Of Red Organic Light Emitting Diodes (OLEDs) Using EuxY(1-x)(TTA)Phen Organic Complexes For Solid State Lighting

N. Thejo Kalyani, S.J. Dhoble, R.B. Pode

Volume 2, Issue 1, Page 65-70, Year 2012 | DOI: 10.5185/amlett.2010.10169

Keywords:

Electroluminescence; HOMO; LUMO; OLED device; luminance

Abstract: 

The mechanism of energy transfer leading to electroluminescence (EL) of a lanthanide complex, EuxY(1-x)(TTA)3Phen (TTA= thenoyltrifluoro-acetone, phen=1,10-phenanthroline), doped into TPBi(1,3,5-tris(N-Phenyl-benzimidizol-2-yl) benzene host at 15 wt% of host is investigated. With the device structure of anode/hole transport layer/EuxY(1-x)(TTA)3Phen (15%): TPBi/electron transport layer/cathode, maximum luminescence of 185.6 cd/m2 and 44.72 cd/m2 was obtained from device I made of Eu0.4Y0.6(TTA)3Phen and device II made of Eu0.5Y0.5(TTA)3Phen, respectively at 18 volts. Saturated red Eu3+emission based on 5D07F2 transition is centered at a wavelength of 612 nm with a full width at half maximum of 5 nm. From the analysis of I-V, J-V-L characteristics and electroluminescent (EL) spectra, we conclude that direct trapping of holes and electrons and subsequent formation of the excitation occur on the dopant, leading to high quantum efficiencies at low current densities. These results show that fabricated OLED devices can successfully emit saturated red light and can be used in applications such as opto-electronic OLED devices, displays and solid state lighting technology. Copyright © 2011 VBRI press.

 

fullabstractpdf

Get PDF

Full Article abstractpdf

Get PDF

Full Article